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Abstract

Binary puzzles are interesting puzzles with certain rules. A solved binary puzzle
is an m X n binary array such that there are no three consecutive ones and also
no three consecutive zeros in each row and each column, the number of ones and
zeros must be equal in each row and in each column, every two rows and every
two columns must be distinct.

Binary puzzles can be seen as constrained arrays. Usually constrained codes
and arrays are used for modulation purposes. In this paper we investigate these
arrays from an erasure correcting point of view. We give lower and upper bound
for the rate of these codes, the probability of correct erasure decoding and erasure
decoding algorithms.

1 Introduction

Sudokus are nowadays very popular puzzles and they are studied for their mathematical
structure [2, 5, 18]. For instance the minimal number of entries that can be specified
in a single 9 x 9 puzzle to ensure a unique solution was in [14] conjectured to be
17, and this was proved by means of the chromatic polynomial of the Sudoku graph
[7]. Furthermore the erasure correcting capabilities and decoding algorithms of the
collection of n x n a Sudokus are considered [13, 16]. The asymptotic rate is still an
open problem [1, 7]. Solving an n x n Sudoku puzzle is an NP-hard problem [17].

The binary puzzle is also an interesting puzzle with certain rules and is the focus of
this paper. We look at the mathematical theory behind it. The solved binary puzzle
is an n X n binary array that satisfies:

1. no three consecutive ones and also no three consecutive zeros in each row and
each column,

2. every row and column is balanced, that is the number of ones and zeros must be
equal in each row and in each column,

3. every two rows and every two columns must be distinct.

Figure 1 is an example of a binary puzzle. There is only one solution satisfying
all three conditions. But there are 3 solutions satisfying (1) and (2). The solution
satisfying three all conditions is given in Figure 2. Figure 3 and 4 are solved puzzles
where the third constraint is excluded.



Figure 2: Solved Puzzle

Figure 1: Unsolved Puzzle

Figure 4: Solved Binario Puzzle with

Figure 3: Solved Binario Puzzle with

repetition of column/row allowed

repetition of column/row allowed



Binary and Sudoku puzzle can be seen as constrained arrays. Usually constrained
codes and arrays are used for modulation purposes [8, 9]. We investigate these arrays
from an erasure correcting point of view. We give lower and upper bound for the
rate of these codes, the probability of correct erasure decoding and erasure decoding
algorithms.

2 Constrained sequences and constrained array

Let C' be a code in ", where the alphabet () has g elements.
Recall that the (information) rate of C' is defined by

log, |C|
—

R(C) =

In the following Q = Fy, n = Im and FL*™ is the set of binary [ x m arrays. Define:

Apem = {X € FY*™ | X satisfies (1)
Bium = {X € FY™ | X satisfies (2)
Crxm = {X € FY™ | X satisfies (3)
Dy = {X € FL*™ | X satisfies (1), (2) and (3) }.
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The theory of constrained sequences, that is for [ = 1, is well established and
uses the theory of graphs and the eigenvalues of the incidence matrix to give a linear
recurrence. An explicit formula for the number of such sequences of a given length
m can be expressed in terms of the eigenvalues. The asymptotical rate is equal to
log,(Amaz), Where Apq, is the largest eigenvalue. See [8, 9]. Shannon [15] showed

already that the following relation holds for m > 1:
| A1 m+2)] = [A1xm+1)| + [A1xm]-

Asymptotically this gives
1 1
R(A1xm) =~ log, 3 + 5\/5 , form — oo

The number of balanced sequence is equal to a number of combination of ones, that
is Bixom = (2;”) and asymptotically R(Bjxom) = 1, for m — oc.
It was shown [6, 10, 11] that the balanced property does not influence the asymptotic
rate of constrained sequences. So R(A1xam N Bixom) = log, (% + %\/5), for m — oo.
We expect that a similar result holds for balanced constrained arrays.
For arrays we know that (il)m < |Boyxom| < (2ll)2m. From these inequalities it is can
be shown that, asymptotically:

1 << R(Bamxom) <1, for m — oo

Four arbitrary elements of Bo,xo, gives an element of Baysam- SO |Bamsxam| >
| Bamxom|*. Therefore R(Ba,,xam) is increasing in m.



Now, consider Cjy,,. We clearly have that |Cjxp,| < 2™(2" —1)--- (2™ —n + 1).
Furthermore, if m = n, |Ci1)xnt1)] = [Crxnl - (2271 — 202" 4 n?).
This implies that, asymptotically:

R(Comxom) = 1, for m — oo

The size of Doy, x2m can be approximated by smaller building blocks such that the

conditions are still satisﬁed [4]. There are exactly two building block of size 2 x 2.
Hence, R(Domxom) > (2m)2 log2(2m ) = }U for m > 1.

Numerically, we have

m A2m>< 2m BZm X2m C12m>< 2m D2m X2m
Size Rate | Size Rate | Size Rate | Size Rate ‘

1 16 1 2 0.25 10 0.83 2 0.25
2030 0.69 | 90 0.41 | 3384 094 | 76  0.39

3 | 3858082 0.61 ? ? ? ? 5868 0.34

3 Erasure Channel

Suppose @ is a set of an alphabet and C'is a code in Q™.
Define Q Q) U {—}, where the symbol ”-” denotes a blank, that is an erasure, and
C' = {r € Q"|r is obtained from a ¢ € C' by erasures}.

Suppose r is the received word given that c is sent. We have d(r, ¢) is the Hamming
distance between r and c. Since the errors are only blanks, d(r, ¢) equal to the number
of blanks in r. Let c(r) be a closest codeword to r, then d(r,C') = d(r,c(r)). Let p
be the probability that a symbol is erased, and let P.;c(p) denote the probability of
correct erasure decoding. Then

edC ZP ZP(I‘C

ceC TEC
c(r)=c

Suppose &(C) = {r € Cld(r,C) = i} and E;(C) = |&(C)|.
Define the homogenous erasure distance enumerator for code C' by

= zn: E(C)X"Y?
=0

Proposition 3.1



Proposition 3.2 Let C C Q™ and D C Q™. We have
Ecup(X,)Y)=Ec(X,Y) - Ep(X,Y)
Corollary 3.3
Peqoxp(p) = (Peac(p)) - (Pea,p(p))

Corollary 3.4 n
Ped,C" (p) = (Ped,C' (p))

4 Binary Puzzle Solver

Binary puzzle can be seen as a SAT problem. Since each cell in the binary puzzle
can only take the values ‘0’ and ‘1’, we can express the puzzle as an array of binary
variables, where false corresponds to ‘0" and true to ‘1’. Next, we express each condition
in terms of a logical expression.

Suppose we have an 2m x 2m array in the variables ;;. The array satisfies the first
condition, that there are no three consecutive ones and also no three consecutive zeros
in each row and each column, if and only if the expression below is true:

A (A L (A=)
AU (L (A=) (A=)

For satisfying the second condition on balancedness, the following expression must
be true

A () B ()

_j:l 1§i1<"'<i'm,+lg2m k=1 =1 1Sj1<"'<jm+l§2m k=1

j=1 | 1<i1 < <ipmy1<2m \ k=1 i=1 [1<ji<<jmi1<2m \ k=1

Note that the complexity of this expression grows as (2;:) which is exponentially in m.
An alternative polynomial expression can be obtained.

The satisfiability of the third condition, that every two rows and every two columns
must be distinct, is equal to

( A {/\ (@i Aig) V (5w A Wz@h)]}) A

1<j1<ja<2m \i=1

( A {/\ (@15 A Tig ) V (7Tiy g A iy )] }) :

1<i1<12<2m \y=1

It is shown in [3] that the binary puzzle is NP-complete.
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